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ABSTRACT

EBER is a form of modulated reflectance spectroscopy in which a low
energy electron beam alters the sample surface potential. For III-V
semiconductors, the spectra are characteristic of electroreflectance,
including excitonic, interband, and impurity transitions. The study of
these transitions provides accurate estimations of band gaps in bulk and
thick film samples. Measurements of the band gap energy in compounds such
as Al Ga, As provide highly precise evaluations of their composition.

Additionally, EBER spectra of quantum well structures and
heterojunctions provide useful information about the composition and quality
of materials and interfaces. For quantum wells, detected features suggest
the presence of allowed, disallowed, and resonant states. In EBER spectra
of HEMT structures, peaks are apparent resulting from transitions between
the valence band and the states in which the electrons are confined. We
present examples of EBER determination of AlGaAs composition, single
GaAs/AlGaAs quantum well evaluation, and HEMT characterization.

INTRODUCTION

For studies of the electronic structure of crystalline materials,
modulation spectroscopies [1] have been widely employed [2]. These
techniques have the capability to measure the optical band gaps, impurity
levels [3], and excitonic transitions in solids, even for artificially
structured and indirect gap materials. Recently, modulation spectroscopies
have been successfully utilized for studies of bulk GaAs wafers and epi
films, quantum well (QW), superlattice, and HEMT structures. Particularly
in the latter case, modulation spectroscopies give clear evidence of the
quantized 2-D electron gas states of HEMT structures.
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Figure 1: Schematic EBER Configuration. Monochromatic light reflects
from the sample into a detector. A fraction (AR) of the total reflected
light (R) has the same frequency (f) as the electron beam. The result-
ing AC and DC signal components, AR and R, are taken in ratio (AR/R) for
the spectrum.
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EXPERIMENTAL DETAILS

To overcome weaknesses inherent in alternative non-contact methods of
electroreflectance (ER) modulation spectroscopy, we have developed a novel

approach. The Electron Beam Electroreflectance (EBER) spectrometer,
schematically indicated in Figure 1, incorporates a low energy (240eV)
electron beam to alter the surface potential of the sample. Following

thermalization [4], the electron current breaks into three conceptual
components, one which charges surface states, another flows across the

surface, and a third which may penetrate the bulk. For low current
densities, the beam causes a net negative surface charge, which provides
contactless electric field modulation [5]. Thus, the surface field can be

amplified as desired.

EBER therefore provides a distinct advantage over alternative non-
contact ER methods such as photoreflectance (PR). The inherent strength of
ER signals depends upon the square of the modulating electric field [6]. 1In
PR, modulation is accomplished by annihilation of existing surface fields
[7], limiting its utility where built-in electric fields are small or where
structures lie beyond these fields [8]. Also, EBER may permit the sample
carrier type to be detected from the "phase" of the spectrum. This is
possible with contact methods, of ER but is impossible in PR which always
reduces existing fields.

Additionally, the vacuum system required for the electron beam provides
experimental advantages. Typically, analyses are performed at 5 x 10°° torr,

relieving issues of surface contamination. Thermostatically controlled
cryogenic cooling, provided on our system, also facilitates studies of the
temperature dependence of energy levels and line broadening. Lower

temperatures also permit improved studies of excitonic effects.

Furthermore, our EBER system has the capability of fitting experimental
spectra to theoretical lineshapes using non-linear least-squares algorithms.
For example, interband transitions are appropriately described by a 2 or 3-

dimensional, 3% derivative lineshape. Exciton lines, in contrast, are
suitably matched to 0-dimensional 1st derivative lineshapes. The
computerized fitting provides very accurate estimates of band gap and
broadening parameters, enabling differences between samples to be

sensitively ascertained.

RESULTS AND DISCUSSION

Bulk and thick film semiconductors represent the simplest application
of EBER spectroscopy. In such cases, we find a sparse spectrum with
features evident close to the optical band gap energies. These features may
have interband, impurity, or excitonic origins, from which characterization
of crystal quality and composition may be made.

As an example, we examine a sample of MBE grown Aleab.As. This sample
has a nominal x value of 0.20. Experimental and theoretical EBER spectra of
this sample are shown in Figure 2. The features labelled "E," for the GaAs
and AlGaAs are composed of bound exciton, free exciton, and interband
transitions. We have matched these spectra to a single excitonic lineshape
for each case [9], showing the agreement is reasonable. Least squares
fitting provides an energy of 1.413 eV for the GaAs and 1.674eV for the
AlGaAs for this example. Correspondingly, we estimate the value of x to be
0.197, with a o of 0.003 from this model [10].
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As a second example, we describe EBER analysis of bound state
transitions in AlGaAs/GaAs quantum wells. An electron energy diagram for
the rectangular barrier model is shown in Figure 3 for this case, indicating
both bound and unbound continuum states. The electronic states of these
structures have been studied by many techniques, but only in a limited
number of cases have observations of forbidden transitions (An odd) and
states above the barrier been reported [1l]. We depict in Figure 4 the EBER
spectrum of a 50A well at 90K. This spectrum has labelled the major
transition assignments which result from the rectangular barrier model.
Note the sharp, excitonic peaks which originate from the GaAs substrate and
AlGaAs barrier layers. The spectral peaks at intermediate energies result
from excitonic levels associated with bound state transitions. Importantly,
we observe not only the lowest allowed transitions ClH1 and C1L1l, but also
parity forbidden transitions such as C1H2, C2H1, and C1H3. Additional
levels are also present in the spectrum, as shown in Figure 5, which we
associate with transitions between bound states and the continuum lying
outside of the well [12].
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Figure 4: EBER Spectrum of a
50A Al Ga, As/GaAs Single Quantum
Well. Note that E, is observed
from both the GaAs substrate and

the AlGaAs barriers. At 90K,
these band gaps appear at 1.505eV
and 1.909=V. Between lie the

excitonic transitions associated
with the bound conduction and
valence band levels. The labels
are based upon the rectangular
barrier model shown in Figure 3.
The results of the model give a
well width of 53A.

Figure 5: Match between
rectangular barrier model of
Figure 3 and experimental EBER
peak energies of Figure 4. Both
allowed (An even) and forbidden
(An odd) transitions are
observed. Levels near 1.9eV are
obscured by the AlGaAs E; peak.
The well width parameter of 53A
closely matches the nominal value
of S50A.

Figure 6: Electron Energy
Diagram of HEMT Structure. Note
that the N-doped AlGaAs layer
allows light to penetrate to the
2-D electron gas and the GaAs
substrate. The band bending
depicted arises from Fermi level
pinning at the surface and within
the substrate, and from the
doping of the AlGaAs.
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We give as a final example the application of EBER to studies of single
heterojunctions. In particular, we choose the case of a MODFET composed of
N-doped AlGaAs epitaxially deposited above undoped GaAs. Figure 6 shows a
schematic of this structure and its energy diagram as a function of depth.
Free carriers from the AlGaAs transfer to the GaAs and remain localized
there in a triangular well. Surface pinning of the Fermi level in the bulk
and at the surface cause the band bending in the structure, as shown.
Electron states within the 1l-dimensional triangular well are quantized in
energy. These energy levels form subbands of 2-dimensionally free electrons
-- the "2-D electron gas," or "2DEG". This structure is suitable for
optical analysis by EBER, as the large bandgap AlGaAs allows light to
penetrate to the GaAs and 2DEG states without significant absorption.

The EBER spectrum for this case appears in Figure 7. Excitonic
transitions appear from the high quality undoped GaAs at the bandgap of
1.424eV. Likewise, from the Si-doped AlGaAs, we observe the E; bandgap
transition at 1.8eV and E+A ) at 2.15eV. This E_ value corresponds to x of
0.25 for the Al Ga, As layer, after accounting for the free carrier Burstein
shift.

At intermediate energies between the GaAs E  and the AlGaAs E, lie the
states of the 2D electron gas. These states have been observed by other ER
techniques [13], but are not as clearly evident from PL studies [14].
Recent theoretical analysis suggests that these additional spectral features
originate from transitions between valence band Bloch states and the
wavefunctions of the 2DEG [15]. The free n=1 exciton has an ionization
field of about 5 x 10° V/m in bulk GaAs, so at first excitonic effects seem
unimportant due to the known high fields (10 V/m) present at the
heterojunction iqferface of a HEMT. However, excitonic contributions cannot
be completely ruled out, due to the effects of electron confinement at the
interface. This confinement increases the exciton Rydberg by a factor of
6.2 [16], and enhances the ionization field by nearly 38, to 2 x 107 v/m.
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CONCLUSION

In this paper, we have described the utility of EBER to analysis of
exemplary III-V bulk and structured material systems. We began with a short
discussion of applications to optical composition determinations,
specifically demonstrating the x-value determination of Al Ga _As. Our
subsequent discussion showed how EBER spectra provide clear determinations
of transition energies in quantum structures. In particular, our EBER
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spectrum of a 50A GaAs quantum and its corresponding theoretical fit were

presented. We concluded with an examination of the experimental EBER
spectrum of a HEMT device, demonstrating analysis of single heterojunction
structures. These examples are indicative of the potential of EBER for

advanced characterization of structured systems.
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